Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Arch Microbiol ; 206(5): 203, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573536

RESUMO

The 1-aminocyclopropane-1-carboxylate (ACC) deaminase is a crucial bacterial trait, yet it is not widely distributed among rhizobia. Hence, employing a co-inoculation approach that combines selected plant growth-promoting bacteria with compatible rhizobial strains, especially those lacking ACC deaminase, presents a practical solution to alleviate the negative effects of diverse abiotic stresses on legume nodulation. Our objective was to explore the efficacy of three non-rhizobial endophytes, Phyllobacterium salinisoli (PH), Starkeya sp. (ST) and Pseudomonas turukhanskensis (PS), isolated from native legumes grown in Tunisian arid regions, in improving the growth of cool-season legume and fostering symbiosis with an ACC deaminase-lacking rhizobial strain under heat stress. Various combinations of these endophytes (ST + PS, ST + PH, PS + PH, and ST + PS + PH) were co-inoculated with Rhizobium leguminosarum 128C53 or its ΔacdS mutant derivative on Pisum sativum plants exposed to a two-week heat stress period.Our findings revealed that the absence of ACC deaminase activity negatively impacted both pea growth and symbiosis under heat stress. Nevertheless, these detrimental effects were successfully mitigated in plants co-inoculated with ΔacdS mutant strain and specific non-rhizobial endophytes consortia. Our results indicated that heat stress significantly altered the phenolic content of pea root exudates. Despite this, there was no impact on IAA production. Interestingly, these changes positively influenced biofilm formation in consortia containing the mutant strain, indicating synergistic bacteria-bacteria interactions. Additionally, no positive effects were observed when these endophytic consortia were combined with the wild-type strain. This study highlights the potential of non-rhizobial endophytes to improve symbiotic performance of rhizobial strains lacking genetic mechanisms to mitigate stress effects on their legume host, holding promising potential to enhance the growth and yield of targeted legumes by boosting symbiosis.


Assuntos
Carbono-Carbono Liases , Fabaceae , Rhizobium , Simbiose , Rhizobium/genética , Ervilhas , Bactérias , Endófitos/genética , Verduras , Resposta ao Choque Térmico
2.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575856

RESUMO

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Assuntos
Antioxidantes , Ácido Ascórbico , Antioxidantes/metabolismo , Ervilhas , Espécies Reativas de Oxigênio , Clorofila A , Peroxidação de Lipídeos , Cloreto de Sódio/farmacologia , Estresse Salino
3.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557190

RESUMO

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Assuntos
Flores , Proteínas de Domínio MADS , Ervilhas , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ervilhas/genética , Ervilhas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Ervilha/genética
4.
Sci Rep ; 14(1): 8877, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632368

RESUMO

Aphanomyces euteiches causes root rot in pea, leading to significant yield losses. However, the metabolites involved in this pathosystem have not been thoroughly studied. This study aimed to fill this gap and explore mechanisms of bacterial suppression of A. euteiches via untargeted metabolomics using pea grown in a controlled environment. Chemical isotope labeling (CIL), followed by liquid chromatography-mass spectrometry (LC-MS), was used for metabolite separation and detection. Univariate and multivariate analyses showed clear separation of metabolites from pathogen-treated pea roots and roots from other treatments. A three-tier approach positively or putatively identified 5249 peak pairs or metabolites. Of these, 403 were positively identified in tier 1; 940 were putatively identified with high confidence in tier 2. There were substantial changes in amino acid pool, and fatty acid and phenylpropanoid pathway products. More metabolites, including salicylic and jasmonic acids, were upregulated than downregulated in A. euteiches-infected roots. 1-aminocyclopropane-1-carboxylic acid and 12-oxophytodienoic acid were upregulated in A. euteiches + bacterium-treated roots compared to A. euteiches-infected roots. A great number of metabolites were up- or down-regulated in response to A. euteiches infection compared with the control and A. euteiches + bacterium-treated plants. The results of this study could facilitate improved disease management.


Assuntos
Aphanomyces , Ervilhas , Raízes de Plantas/metabolismo , Doenças das Plantas/microbiologia , Metabolômica
5.
Methods Mol Biol ; 2798: 205-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587745

RESUMO

Superoxide and hydrogen peroxide are reactive oxygen species (ROS) involved in the oxidation of multiple biological molecules and the signaling processes during plant growth and stress response. Thus, control of ROS is fundamental for cell survival and development, with superoxide dismutase (EC 1.15.1.1, SOD) being one of the main enzymes involved. Different isoforms of SOD catalyze the dismutation of superoxide (O2.-) to hydrogen peroxide (H2O2) and oxygen (O2), such as Mn-SODs, Cu,Zn-SODs, and Fe-SODs. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) combined with a specific staining method for SOD activity, the protocol describes the identification of different SOD isozymes, based on their differential inhibition by KCN and H2O2, in different organs and plant species such as pea (Pisum sativum L.) leaves and pepper (Capsicum annuum L.) fruits.


Assuntos
Isoenzimas , Superóxido Dismutase , Superóxidos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Frutas , Oxigênio , Ervilhas
6.
Methods Mol Biol ; 2791: 121-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532099

RESUMO

The chlorophyll a fluorescence measurement method is used to determine the efficiency of the photosynthetic apparatus and to assess the physiological state of photosynthetic organisms. The measurement is simple, fast, and noninvasive. It is a precise tool to study photosynthesis response under stress conditions or to assess the impact of specific environmental factors on plants. Here we describe the usage of this method in environmental-controlled plant production systems differing in temperature or light source on the growth and development of common buckwheat.


Assuntos
Clorofila , Ervilhas , Clorofila A , Fluorescência , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia , Cinética , Folhas de Planta/metabolismo
7.
Sci Rep ; 14(1): 5378, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438424

RESUMO

The unculturable nature of intracellular obligate symbionts presents a significant challenge for elucidating gene functionality, necessitating the development of gene manipulation techniques. One of the best-studied obligate symbioses is that between aphids and the bacterial endosymbiont Buchnera aphidicola. Given the extensive genome reduction observed in Buchnera, the remaining genes are crucial for understanding the host-symbiont relationship, but a lack of tools for manipulating gene function in the endosymbiont has significantly impeded the exploration of the molecular mechanisms underlying this mutualism. In this study, we introduced a novel gene manipulation technique employing synthetic single-stranded peptide nucleic acids (PNAs). We targeted the critical Buchnera groEL using specially designed antisense PNAs conjugated to an arginine-rich cell-penetrating peptide (CPP). Within 24 h of PNA administration via microinjection, we observed a significant reduction in groEL expression and Buchnera cell count. Notably, the interference of groEL led to profound morphological malformations in Buchnera, indicative of impaired cellular integrity. The gene knockdown technique developed in this study, involving the microinjection of CPP-conjugated antisense PNAs, provides a potent approach for in vivo gene manipulation of unculturable intracellular symbionts, offering valuable insights into their biology and interactions with hosts.


Assuntos
Afídeos , Buchnera , Ácidos Nucleicos , Orobanchaceae , Ácidos Nucleicos Peptídicos , Animais , Ácidos Nucleicos Peptídicos/genética , Buchnera/genética , Afídeos/genética , Ervilhas , Elementos Antissenso (Genética)
8.
Genes (Basel) ; 15(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540332

RESUMO

Soil rhizobia promote nitrogen fixation in legume hosts, maximizing their tolerance to different biotic stressors, plant biomass, crop growth, and yield. While the presence of soil rhizobia is considered beneficial for plants, few studies have assessed whether variation in rhizobia abundance affects the tolerance of legumes to stressors. To address this, we assessed the effects of variable soil rhizobia inoculum concentrations on interactions between a legume host (Pisum sativum), a vector insect (Acyrthosiphon pisum), and a virus (Pea enation mosaic virus, PEMV). We showed that increased rhizobia abundance reduces the inhibitory effects of PEMV on the nodule formation and root growth in 2-week-old plants. However, these trends were reversed in 4-week-old plants. Rhizobia abundance did not affect shoot growth or virus prevalence in 2- or 4-week-old plants. Our results show that rhizobia abundance may indirectly affect legume tolerance to a virus, but effects varied based on plant age. To assess the mechanisms that mediated interactions between rhizobia, plants, aphids, and PEMV, we measured the relative expression of gene transcripts related to plant defense signaling. Rhizobia concentrations did not strongly affect the expression of defense genes associated with phytohormone signaling. Our study shows that an abundance of soil rhizobia may impact a plant's ability to tolerate stressors such as vector-borne pathogens, as well as aid in developing sustainable pest and pathogen management systems for legume crops. More broadly, understanding how variable rhizobia concentrations can optimize legume-rhizobia symbiosis may enhance the productivity of legume crops.


Assuntos
Fabaceae , Rhizobium , Vírus , Fabaceae/genética , Rhizobium/genética , Solo , Ervilhas
9.
Adv Colloid Interface Sci ; 326: 103123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502971

RESUMO

A map of stability for various water/oil/pea protein compositions has been plotted from the numerous reported results. Two clear regions of stability were identified. High internal oil phase emulsions with 70-80%, v/v oil content stabilized by total pea protein concentration <2.5%, w/v showed stability. Low oil content of 10-30%, v/v for a range of total pea protein concentrations >0.5%, w/v have also been identified as stable. Intermediate oil content and pea protein concentrations >4% w/v are unexplored regions and are likely to be areas of fruitful future research. The wide range of stability suggests that different stabilization mechanisms could be important for different compositions and careful consideration has to be taken to avoid oversimplification. Both stabilization with particles, i.e. Pickering emulsions, and protein unfolding have been suggested as mechanisms. The diverse way of describing stability makes it difficult to intercompare results in different studies. A summary of different oil types used have been presented and several properties such as dynamic viscosity, density, the dielectric constant and interfacial tension have been summarized for common vegetable oils. The type of vegetable oil and emulsion preparation techniques were seen to have rather little effect on emulsion stability. However, the different extraction methods and processing of the pea material had more effect, which could be attributed to changing composition of different proteins and to the states of aggregation and denaturing. Careful consideration has to be taken in the choice of extraction method and an increased understanding of what contributes to the stability is desirable for further progress in research and eventual product formulation.


Assuntos
Proteínas de Ervilha , Ervilhas , Emulsões , Viscosidade , Tamanho da Partícula
10.
Appl Environ Microbiol ; 90(3): e0185123, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38426790

RESUMO

Symbiotic nitrogen fixation (SNF) by rhizobia is not only the main natural bionitrogen-source for organisms but also a green process leveraged to increase the fertility of soil for agricultural production. However, an insufficient understanding of the regulatory mechanism of SNF hinders its practical application. During SNF, nifA-fixA signaling is essential for the biosynthesis of nitrogenases and electron transfer chain proteins. In the present study, the TetR regulator NffT, whose mutation increased fixA expression, was discovered through a fixA-promoter-ß-glucuronidase fusion assay performed with Rhizobium johnstonii. Real-time quantitative PCR analysis showed that nffT deletion increased the expression of symbiotic genes including nifA and fixA in nifA-fixA signaling, and fixL, fixK, fnrN, and fixN9 in fixL-fixN signaling. nffT overexpression resulted in disordered nodules and reduced nitrogen-fixing efficiency. Electrophoretic mobility shift assays revealed that NffT directly regulated the transcription of RL0091-93, which encode an ATP-binding ABC transporter predicted to be involved in carbohydrate transport. Purified His-tagged NffT bound to a 68 bp DNA sequence located -32 to -99 bp upstream of RL0091-93 and NffT deletion significantly increased the expression of RL0091-93. nffT-promoter-ß-glucuronidase fusion assay indicated that nffT expression was regulated by the cobNTS genes and cobalamin. Mutations in cobNTS significantly decreased the expression of nffT, and cobalamin restored its expression. These results revealed that NffT affects nodule development and nitrogen-fixing reaction by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes and, thus, plays a pivotal regulatory role during symbiosis of R. johnstonii-Pisum sativum.IMPORTANCESymbiotic nitrogen fixation (SNF) by rhizobia is a green way to maintain soil fertility without causing environmental pollution or consuming chemical energy. A detailed understanding of the regulatory mechanism of this complex process is essential for promoting sustainable agriculture. In this study, we discovered the TetR-type regulator NffT, which suppressed the expression of fixA in Rhizobium johnstonii. Furthermore, NffT was confirmed to play pleiotropic roles in R. johnstonii-Pisum sativum symbiosis; specifically, it inhibited rhizobial growth, nodule differentiation, and nitrogen-fixing reactions. We revealed that NffT indirectly affected R. johnstonii-P. sativum symbiosis by participating in a complex regulatory network of symbiotic and carbohydrate metabolic genes. Furthermore, cobalamin, a chemical molecule, was reported for the first time to be involved in TetR-type protein transcription during symbiosis. Thus, NffT identification connects SNF regulation with genetic, metabolic, and chemical signals and provides new insights into the complex regulation of SNF, laying an experimental basis for the targeted construction of rhizobial strains with highly efficient nitrogen-fixing capacity.


Assuntos
Rhizobium , Rhizobium/genética , Rhizobium/metabolismo , Fixação de Nitrogênio/genética , Ervilhas , Glucuronidase/metabolismo , Carboidratos , Nitrogênio/metabolismo , Solo , Vitamina B 12/metabolismo , Simbiose/genética
11.
Environ Entomol ; 53(2): 288-292, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38431884

RESUMO

The western tarnished plant bug, Lygus hesperus (Knight), has emerged as a pest of potatoes (Solanum tuberosum L.) in the Lower Columbia Basin of Oregon and Washington. This species is generally found infesting several other field-grown crops in the region; however, their host preference is poorly understood. Thus, greenhouse cage experiments were conducted to evaluate L. hesperus host preference by simultaneously presenting adults with 4 host plants: potato, alfalfa, Medicago sativa L., carrot, Daucus carota L., and pea, Pisum sativum L. In addition, an oviposition test was conducted. The results indicated that L. hesperus actively chose as a host and as an oviposition substrate among the 4 host plants. We found a significantly higher number of adults on alfalfa and potato plants over carrot or pea plants at 6 h, 24 h, and 48 h after adults were released into the cage. However, 96 h after release, more L. hesperus were found in alfalfa. In addition, female L. hesperus strongly preferred potato and alfalfa plants as an oviposition substrate over carrot and pea plants at 96 h after release.


Assuntos
Daucus carota , Hemípteros , Heterópteros , Solanum tuberosum , Feminino , Animais , Medicago sativa , Ervilhas
12.
Int J Biol Macromol ; 264(Pt 2): 130559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431016

RESUMO

The effects of structural changes on surface oil absorption characteristics of wheat starch, pea starch and potato starch during frying under different water content (20%, 30%, 40%, 50%) were studied. Fried potato starch with a 40% water content exhibited the highest surface oil content. When the initial moisture content reached 30%, the scattering intensity of the crystal layer structure decreased for wheat and pea starches, while the scattering peak for potato starch completely disappeared. At 40% moisture content, the amorphous phase ratio values for fried potato, wheat and pea starches were 13.50%, 11.78% and 11.24%, respectively, and the nitrogen adsorption capacity of fried starch decreased in turn. These findings that the structure of potato starch was more susceptible to degradation compared to pea starch and wheat starch, resulting in higher surface oil absorbed by potato starch during frying process.


Assuntos
Ervilhas , Solanum tuberosum , Solanum tuberosum/química , Triticum/metabolismo , Amido/química , Água/química
13.
J Agric Food Chem ; 72(11): 6053-6063, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452150

RESUMO

Legumes possess several bioactive nutrients, including flavonoids, and the study of the flavonoid profile of legumes is of great significance to human health. Using widely targeted metabolomics, we revealed the flavonoid profiles of five popular fresh legumes: cowpea, soybean, pea, fava bean, and kidney bean. A total of 259 flavonoids were identified, and the flavonoid accumulation patterns of the five legumes were remarkably different. In addition to analyzing common and species-specific flavonoids in the five legumes, we also generalized representative flavonoids of various subclasses. We related these to the health-promoting effects of legumes. Furthermore, legumes' total flavonoid content and antioxidant system activity were also detected. Intriguingly, sakuranetin, the sole flavonoid phytoalexin that can be induced by UV radiation, was detected only in the peas by metabolomics. Meanwhile, we found that UV treatment could significantly increase the sakuranetin content and the postharvest Botrytis cinerea resistance of pea pods. This study provides clues for the target diet, industrial development of legumes, and a new idea for the postharvest preservation of peas.


Assuntos
Fabaceae , Fitoalexinas , Ervilhas , Humanos , Flavonoides/farmacologia , Botrytis , Antioxidantes/farmacologia
14.
J Agric Food Chem ; 72(9): 4947-4957, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393752

RESUMO

The impact of selenium (Se) enrichment on bioactive compounds and sugars and Se speciation was assessed on different microgreens (green pea, red radish, and alfalfa). Sodium selenite and sodium selenate at a total concentration of 20 µM (1:1) lead to a noticeable Se biofortification (40-90 mg Se kg-1 DW). In green pea and alfalfa, Se did not negatively impact phenolics and antioxidant capacity, while in red radish, a significant decrease was found. Regarding photosynthetic parameters, Se notably increased the level of chlorophylls and carotenoids in green pea, decreased chlorophyll levels in alfalfa, and had no effect on red radish. Se treatment significantly increased sugar levels in green pea and alfalfa but not in red radish. Red radish had the highest Se amino acid content (59%), followed by alfalfa (34%) and green pea (28%). These findings suggest that Se-biofortified microgreens have the potential as functional foods to improve Se intake in humans.


Assuntos
Raphanus , Selênio , Humanos , Selênio/metabolismo , Raphanus/química , Ervilhas , Medicago sativa/metabolismo , Clorofila , Compostos Fitoquímicos
15.
Food Chem ; 445: 138696, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354643

RESUMO

This study investigated the odor profiles of four pea milk varieties based on sensory evaluation, electronic nose (E-nose), and gas chromatography-mass spectrometry (GC-MS) with soybean milk as a reference. Compared to soybean milk, pea milk exhibited lower intensity of beany, oil-oxidation, and mushroom flavors as well as higher intensity of grassy/green and earthy flavors. ZW.6 pea milk was selected for further identification of key odor-active compounds using molecular sensory science approaches. Using headspace solid phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), and dynamic headspace sampling (DHS) combined with comprehensive gas chromatography-olfactometry-mass spectrometry (GC × GC-O-MS), 102 odor-active compounds were detected in ZW.6 pea milk. Among these, 19 compounds exhibiting high flavor dilution (FD) factors were accurately quantitated. Ten key odor-active compounds were ultimately identified through aroma recombination and omission experiment. Aldehydes and alcohols significantly contribute to the odor profile of pea milk.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Odorantes/análise , Soja , Ervilhas , Leite/química , Compostos Orgânicos Voláteis/análise , Aromatizantes/análise , Olfatometria/métodos
16.
BMC Plant Biol ; 24(1): 113, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365619

RESUMO

BACKGROUND: The WRKY gene family is one of the largest families of transcription factors in higher plants, and WRKY transcription factors play important roles in plant growth and development as well as in response to abiotic stresses; however, the WRKY gene family in pea has not been systematically reported. RESULTS: In this study, 89 pea WRKY genes were identified and named according to the random distribution of PsWRKY genes on seven chromosomes. The gene family was found to have nine pairs of tandem duplicates and 19 pairs of segment duplicates. Phylogenetic analyses of the PsWRKY and 60 Arabidopsis WRKY proteins were performed to determine their homology, and the PsWRKYs were classified into seven subfamilies. Analysis of the physicochemical properties, motif composition, and gene structure of pea WRKYs revealed significant differences in the physicochemical properties within the PsWRKY family; however, their gene structure and protein-conserved motifs were highly conserved among the subfamilies. To further investigate the evolutionary relationships of the PsWRKY family, we constructed comparative syntenic maps of pea with representative monocotyledonous and dicotyledonous plants and found that it was most recently homologous to the dicotyledonous WRKY gene families. Cis-acting element analysis of PsWRKY genes revealed that this gene family can respond to hormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin (GA), methyl jasmonate (MeJA), and salicylic acid (SA). Further analysis of the expression of 14 PsWRKY genes from different subfamilies in different tissues and fruit developmental stages, as well as under five different hormone treatments, revealed differences in their expression patterns in the different tissues and fruit developmental stages, as well as under hormone treatments, suggesting that PsWRKY genes may have different physiological functions and respond to hormones. CONCLUSIONS: In this study, we systematically identified WRKY genes in pea for the first time and further investigated their physicochemical properties, evolution, and expression patterns, providing a theoretical basis for future studies on the functional characterization of pea WRKY genes during plant growth and development.


Assuntos
Genes de Plantas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ervilhas/genética , Filogenia , Família Multigênica , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Hormônios , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
17.
New Phytol ; 242(2): 626-640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396236

RESUMO

Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.


Assuntos
Giberelinas , Nodulação , Nodulação/fisiologia , Citocininas , Ácidos Indolacéticos/farmacologia , Ervilhas/genética , Hormônios , Regulação da Expressão Gênica de Plantas , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Environ Sci Process Impacts ; 26(4): 710-720, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38385295

RESUMO

Metal-organic framework (MOF) materials have unique structure and fantastic properties for wide-ranging applications. Pilot studies highlighted the toxicity and potential threats of MOF materials to the environment. In this study, we revealed the phytotoxicity of MOF-74(Co) nanoparticles (NPs) and their inhibitory effects on the photosynthesis of pea seedlings (Pisum sativum L.). MOF-74(Co) NPs have limited influences on the germination of pea seeds, but distinct environmental effects of MOF-74(Co) NPs were found in pea seedlings. The root length of pea seedlings, fresh weight and dry weight decreased by 50.0%, 29.2% and 36.4%, respectively, compared with the control group, when the material concentration was greater than 100 mg L-1. The net photosynthetic rate decreased by 48% and the intercellular CO2 concentration increased by 183% upon exposure to MOF-74(Co) NPs. Mechanistically, MOF-74(Co) exposure led to Co uptake in pea seedlings; the increases were 223% for the root, 267% for the stem and 6562% for the leaves, respectively, when the MOF-74(Co) NP concentration was 10 mg L-1. The released Co ions from MOF-74(Co) NPs caused oxidative damage to leaves and induced damage to the acceptor side of photosynthesis system II. Our results indicated that the environmental toxicity of MOF materials was largely regulated by the metal centers. MOF materials with nontoxic metal elements are desirable for future applications.


Assuntos
Estruturas Metalorgânicas , Fotossíntese , Ervilhas , Plântula , Ervilhas/efeitos dos fármacos , Ervilhas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Estruturas Metalorgânicas/química , Fotossíntese/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Germinação/efeitos dos fármacos , Poluentes do Solo/toxicidade
19.
J Food Sci ; 89(4): 2292-2304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380684

RESUMO

The ability to modulate direct expanded product structures improves the versatility and range of product applications. The effect of nucleating agents, namely, talc and calcium carbonate (CC), on the expansion characteristics of pea starch extrudates as impacted by screw speed was explored. Pea starch blends with increasing levels of nucleating agents (0.25%, 1%, and 2%) at 18% moisture (w.b.) were extruded across a range of screw speeds (150, 250, 350, and 450 rpm). The water absorption index, water solubility index (WSI), expansion ratio (ER), unit density, and cell count were determined to evaluate the performance of nucleating agents. The nucleating efficiency of CC, as assessed by cell count, improved with increasing screw speeds. In contrast, the nucleating efficiency of talc was influenced by inclusion levels irrespective of screw speed. ER values ranged from 2.10 to 2.88, where higher nucleating agent inclusions and screw speeds corresponded with lower ER values. Increased nucleating agents and screw speeds corresponded to higher WSI values suggesting the nucleating agents promoted starch degradation. The nucleating agents appeared to promote flow instabilities indicated upon assessment of the extrudate surface. PRACTICAL APPLICATION: This study provides helpful information on the expanded extrudate structure of pea starch as influenced by screw speed and nucleating agents. These findings may help the food industry select processing parameters and appropriate nucleating agent inclusion levels when producing new expanded products with unique textures.


Assuntos
Manipulação de Alimentos , Amido , Amido/química , Talco , Ervilhas , Água/química
20.
Environ Sci Pollut Res Int ; 31(15): 22547-22559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409379

RESUMO

The study was focused on evaluating the short-term irrigation effect of three different types of distillery wastewater, i.e., untreated, primary treated, and secondary treated, on the germination, growth, photosynthetic pigments, and antioxidant enzymes of pea (Pisum sativum L. var. Rachna). The findings indicated that exposure to 50% secondary treated distillery wastewater (ST50) resulted in the maximum values for positive germination parameters of pea, including germination percentage, germination value, germination index, peak value, vigor index, speed of germination, and tolerance index. The minimum values were observed at 100% concentration of untreated wastewater (UT100). In contrast, the maximum values for various negative germination parameters, i.e., percent inhibition, seedling mortality, and germination period, were observed at UT100 and minimum at ST50. All the growth parameters studied, i.e., length of shoot, length of root and length of seedlings, fresh weight of shoot, fresh weight of root, dry weight of shoot, and dry weight of root, showed maximum values at ST50 and minimum at UT100. Photosynthetic pigment analysis also followed a similar trend. The antioxidative enzyme characterization of Pisum sativum L. var. Rachna revealed the minimum values of catalase, ascorbic peroxidase, glutathione reductase, and superoxide dismutase at ST25 (25% concentration of secondary treated distillery wastewater) and maximum values were observed at UT100.


Assuntos
Antioxidantes , Águas Residuárias , Antioxidantes/farmacologia , Ervilhas , Plântula , Germinação , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...